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Abstract—In this paper a general method of analysing framed structures composed on non-linear elastic
material is described. For statically indeterminate pin-jointed frames composed of material having a stress—
strain relation of the form & = gy(g/0,)" and for rigid jointed frames composed of members having moment—
curvature relations of the form ¢ = ¢o(M/M,)" it is shown that no redistribution of actions occurs as the loading
is increased. The applicability of the method of “mixed systems™ is demonstrated. For moment—curvature
relationships having a definite slope at M = 0 it is shown in a number of particular cases that redistribution
under increasing load is only slight and that the distribution of actions is similar to that obtained by a linear
analysis.

1. INTRODUCTION

NuUMEROUS methods of analysis of statically indeterminate framed structures of linear
elastic material have been developed during the past half century. These methods apply
only to materials which behave in a Hookean manner. On the other hand, few, if any, of
the materials used in real structures are linear-elastic. Mild steel is very nearly linear-
elastic up to the yield point, but beyond the yield point is plastic, and use has been made
of this plastic property in the “collapse” method of design of steel structures. Reinforced
concrete, however, is not linear-elastic at any stage. In spite of this fact building authori-
ties suggest that the internal actions in indeterminate frames of reinforced concrete are
to be determined from a linear-elastic analysis.

In view of the fact that most structural materials are non-linear it is of interest to
examine a method for analysing indeterminate structures of such materials and to note
the effects on redistribution of certain forms of stress—strain relation.

Hoff [1] has shown that it is possible by means of an elastic analogue to eliminate the
parameter time from the analysis of the final state of stress in bodies subject to creep.
As, however, the stress—strain relations to be considered are in general non-linear, atten-
tion is again focussed on non-linear elastic analysis. As an example Hoff [1] has used the
complementary energy method to determine the moment distribution in a frame for
which the rate of change of curvature of each element was assumed as proportional to a
power of the bending moment.

2. INDETERMINACY

The statement that a structure is statically indeterminate implies that the conditions
621
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of static equilibrium alone are insufficient to permit the determination of the internal
actions in the structure.*

3. EQUILIBRIUM

Any framed structure which is m-fold statically indeterminate may be converted to a
statically determinate structure by the introduction of m suitable releases. The releases
cannot be chosen indiscriminately but must in fact be so chosen that all internal actions
in the structure may be determined from the conditions of static equilibrium. In general,
however, it will be found that there are several ways in which the releases may be made.

Corresponding to the m releases made to reduce the structure to a statically deter-
minate state it can be shown that there are m independent systems of self-equilibrating
member actions. If the structure is reduced to a one-fold indeterminate structure by intro-
ducing (m— 1) suitable releases and then unit value is postulated for the action corres-
ponding to the mth release, it is possible to find, by the equations of statics, actions in
members throughout the structure corresponding to this unit action. Such a system of
forces or actions is referred to as a self-equilibrating system in that it is not related to
any load system external to the structure. By repeating the process m times with a different
and independent one-fold indeterminate structure each time, a total of m independent
systems of self-equilibrating forces is obtained. Any number of other systems of self-
equilibrating forces can be obtained by taking linear combinations of the above systems.

If (P. f,;) is the generalized internal action (stress-resultant) at some section i of the
structure, such that this system of actions is in equilibrium with the applied external loads
described by P, and f,; is the internal action at the same position, corresponding to the
rth system of self-equilibrating forces, then the sum of the actions

Pfoi+Dp, - Jui

will represent the internal action at position i in the structure such that the complete
system is in equilibrium with the external loads. In the above p, is an arbitrary multiplier.
Any number of self-equilibrating systems with arbitrary multipliers together with the
system Pf,,; will give a system of actions in equilibrium with the external loads. However,
if it is decided to include the influence of actions at all the release positions (and this will
be necessary if the complete m fold indeterminate structure is to be analyzed) it will be
necessary to use all the m systems of self-equilibrating forces in the general expression for
the internal action at i, i.e.

F; = Pfo;+ i P S (1)

r=1

The terms Pf,; in equation (1) can be derived by analysing the structure which has
been made statically determinate, by the introduction of the above-mentioned m releases.
However, it is not necessary that these actions be determined in this way. They may be
derived by analysing the structure which has been made determinate by the introduction
of releases other than those previously referred to. Nevertheless, any system of actions

* Henderson and Bickley [2] have proposed a systematic procedure by means of which the degree of static
indeterminacy may be calculated. It is not intended to deal with this aspect of the problem here and the interested
reader may consult the paper referred to for a discussion of this problem.
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(Pfo;) corresponding to a particular choice of releases m will be found to be a combination

of the actions Pf,; and the terms f,; with special values for the multipliers.
As an illustration of the above consider the structure shown in Fig. 1.
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F1G. 1. Fixed-ended portal frame.

One possible set of releases are moment releases at A, C and D. Confining attention to
bending moments the actions Pfy,, f};, f5; and f3; are shown diagrammatically in Fig. 2.
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FiG. 2. Bending moment diagrams for the external load system, and self-equilibrating systems with
hinges at A, C and D.

If one adds to Pf,, the quantity (— PL/2)(f,;) the new system (Pfy,) = Pfo;—(PL/2)(f1:)
is obtained. This system is shown diagrammatically in Fig. 3 and corresponds to a deter-
‘minate structure obtained by making three releases at E.
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FiG. 3. Bending moment diagram for the external load system with three releases at E.



624 F. E. ARCHER

The complete specification of the internal actions by

F; = Pfoj+pif1i+p2 [+ Pafs
is identical with the specification
F = (Pfo)) + P\ fri+Pafai+Psfai
provided
Py = [p, +(PL/2)].

It can be shown further that the Pf,; system need not necessarily refer to a statically
determinate structure but may refer to an indeterminate one obtained from the original
structure.

4. COMPATIBILITY

Although it was stated with reference to equation (1) that the multipliers p, could have
any values whatsoever, it must be remembered that equilibrium only was being considered.
For arbitrary values of p, it is possible that continuity will be destroyed at some or all of
the release positions (e.g. axial separations, lateral displacements and/or rotations may
occur). In order that compatibility be satisfied, that is that continuity be maintained
throughout the structure, it will be necessary to determine particular values for the multi-
pliers p,. This operation will involve the calculation of deformations of the elements of
the structure, and these will depend upon the dimensions of members and upon the stress-
strain relation of the material of which the members are composed.

5. PIN-JOINTED FRAMED STRUCTURES

In a structure composed of straight members joined together through frictionless
ball-joints the actions through the structure are axial forces only, provided the external
loads are applied at node points. Consider such a structure with ‘m’ redundants and for
simplicity let each member be of uniform cross-section throughout its length. Assume
further that the stress—strain relation for the material is ¢ = ¢, . G(o/6,), Where g, is a
limiting stress and g, is the corresponding strain.

The axial force in the ith member, F;, may be expressed as explained earlier as

F; = Pfy;+ Z P fui
r=1

The stress in the member will be given by
o; = Fi/A;

and, making use of the stress—strain relation, the strain in the member will be
& = & . G(F/a,A).
The clongation of this member will be

e,'=8i.li
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The principle of virtual work may be stated in the following way. If any system of
forces is in equilibrium, the work done by the forces during any virtual displacements is
equal to zero.

Each of the self-equilibrating force systems referred to earlier may be taken with any
pattern of virtual displacements and according to the principle of virtual work the work
done by such a force system will be zero. If the virtual displacements are chosen as those
in the indeterminate structure acted upon by the external loads P, and remembering that
there are no discontinuities in this structure, then the total work will be given as the
product of the force f,; and the elongation e; for each member making up the self-equili-
brating force system structure. Hence

Wy = Zfri-ei
F,
= Zﬁoli S G(UoAf)
=0

the summation being taken over all members making up the self equilibrating force
system structure.
Using the expression for F; gives;

Zaoli.ﬁi.G[Pf"'*”‘fl:;"+p'"f""]= 0 2)

Repeating the procedure for m independent self-equilibrating systems will yield m simul-
taneous equations in which the unknowns are p, ...p,,.
Except for the particular case where

& = const. o

the simultaneous equations are not linear. Further, in general, p,...p, will be non-
linear functions of the load term P.

If the stress—strain relation for unloading is different from that for loading of a material
then the method which is summarized in the system of equations (2) is not valid if unload-
ing occurs in any part of the structure during the general loading process.

6. SPECIAL STRESS-STRAIN RELATIONSHIP

If the stress—strain relation for the material has the special form

O.n
&= go| —
Go

where n is any number greater than one, but not necessarily an integer, then equation (2)

becomes
Pfo; .. A"
Zgoli~j;-il:f0'+plfh+ pmfmil =0
ao4;

This can be re-written in the form

_@_Pnz llfn[fofi'(pl/P)fl;‘i' . (pm/P) fmzl » _o
o 1

13
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As (¢oP"/0%) is non-zero we can divide throughout by that quantity. In the resulting
system of non-linear simultaneous equations the unknowns are

(®1/P), (p2/P), ... (pu/P).

For such a stress—strain relation, then, the ratio of forces in the various members will
be independent of the intensity of the load system characterized by P, provided that the
structure is subjected to proportional loading. In this limited sense the principle of super-
position applies in this special case. Further, as the relative distribution of forces in the
members remains constant as the external loads are increased, no unloading occurs in any
member and the method of analysis is therefore valid.

Example 1
Consider the symmetrical three bar structure of Fig. 4. The bars are of equal cross-
sectional area 4 and the material of each bar has a stress—strain relation ¢ = fo"...n > 1

F1G. 4. Symmetrical three-bar system.

Let
Pap = Pop = Py
and
Pyp = P,.
To satisfy equilibrium
P = P,+2P, cos a.

The stress in AD and CD is P,/4 and the corresponding strain is B(P,/A)". The
elongation of member AD is S(P,/A)'. L sec a. The vertical displacement of D corres-

ponding to this elongation is
P \"
—) Lsec?a.
ﬂ( A) sec’a

The stress in member BD is P,/A, and the corresponding strain is S(P,/A)".
The elongation of member BD and consequently the vertical displacement of D is,

P\"
ﬂ(j) L.
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To satisfy the compatibility condition
Pl n _ P2 n
B(X) Lseca—B(A .L

P, .sec*"a = P,.

from which

Substitution in the equilibrium equation yields
_ P(cosa)*”
LT 14+ 2(cos a)t T2
and so

p

| . —
27 1+ 2(cos o)t

Table 1 shows the variation in P,/P for various values of n for the particular case
o = 60°.

TABLE 1

Py/P

b

0-800
0-666
0-615
0-586
0-569
0-500

8 hw—

It is of interest to note that as n becomes very large the result approaches the result
obtained by assuming that the material of the bars is “rigid-plastic”. If the rigid-plastic
approach is made there is no unique solution so long as the force in all members is below
the force to cause plastic flow—any distribution of forces satisfying the equilibrium
conditions will be valid. If, however, the material has a stress—strain relation

o\"®
8—_—80‘—
Oo

then for the situation dealt with here the distribution of forces in the bars is unchanged
from the beginning of loading up to any value of the applied load.

Example 2
Consider the unsymmetrical frame of Fig. 5. The bars in this structure are all of cross-
sectional area A4, and the stress—strain relation is

o.’l
& = go| —
O,

Using the notation of the earlier section, the member forces and sizes are shown in
Table 2.
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F1G. 5. Unsymmetrical three-bar system.

TABLE 2
Member Pfoi Ju Fy = Pfo;+pi fui
1 0 1 I
P lf{cosy siny P pyfcosy siny
2 —COSecC a -t —coseca— +—
2 2\cos o sina 2 2 \cosa sina
P l{siny cosy P pyfsiny cosy
3 —cosec o - —cosec o —— - ———
2 2\sinx cosa 2 2 \sina cosa

As a particular case take a = 60° and y = 30°, then the work equation

Y it (g) -0

Py | P\ " aviewa (P}
Sl [ [ )] o () o

Expanding the above gives

2 3 n—1
—1+5."c1.(%)—7."ci(%) +17."c3(%‘) ...—(2"—1)."cn_,(%)

+{2"+1+1+(3)1+"/2}(%) =0

becomes

if n is an odd integer, and

2 3 n—1
—1+5."c1(’%) —7."c2(%> +17."C3(%) +(2"+1)."c,,_1(%)

n+ +n & n_
— {21 _1-(3) /2}(P) =0

if n is an even integer.

For any value of n it is seen that p, is independent of the value of P. In this particular
problem there is no difficulty associated with taking n either odd or even as the forces in
the members are all positive for all values of P and the corresponding elongations obtained
in terms of F} are all of the same sign.*

* If the loading or form of the structure were such that the force in some members was negative the use of an
even value for n would make the changes in length of those members positive instead of negative.
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The values of the forces in the three members are shown in Table 3 for several values
of n.

TABLE 3

n P,/P pP,/P p,/pP

1 0-09815 (0-80370) \/3/3 (1-09815) \/3/3
2 0-09807 (0-80386) \/ 3/3 (1-09807) \/ 3/3
3 00734 (0-8532) /3/3 (1-0734y . /3/3
35 00635 (0-8730) \/3/3 11-0635) \/3/3
4 0-0560 (0-8880) \/3/3 (1 0560) \/3/3
5 00453 (0-9094) \/ 3/3 (1-0453) \/ 3/3

As n increases P;/P decreases while P,/P and P;/P approach the value ,/3/3. For this
particular structure the rigid-plastic analysis would give P;/P = 0, and P,/P = P;/P =

J3/3.

Example 3

The structure considered in Examples 1 and 2 were one-fold indeterminate only.
The next example to be considered will be the two-fold indeterminate structure of Fig. 6.
A

B C

FiG. 6. Two-fold indeterminate plane pin-jointed frame.

All bars have the same cross-sectional area which may be taken as unity and all bars
except 5 are of length L. The forces in the bars are given in Table 4 in terms of the external
load and unit values of forces in members S and 6.

TaBLE 4
Member  Length Pfo; Ssi Sei F;
1 L J3/3P 0 1 J3/3P+ps
2 L J3/3pP -1 J3/3P—ps
3 L J3/3P —2\/3/3 -1 V3/3P—2./3/3ps—ps
4 L \/3/3P \/3/3 1 V3/3P+ /3/3ps+pe
5 J3L 0 Ps
6 L 0 0 1 Ps
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If it is assumed that the stress—strain relation for the material is given by

& = gola/ao)’

then the parameters p; and ps will be obtained by solving the equations

F)y . fsi l;=0

FYy fe: .l =0.

6
2 (
i=1
6
2
i=1
For the case n = 1, that is for a linear elastic material the above equations become,

5+ 3\/3)(p5/P)+3\/3 (ps/P)—1=0
and V3 (0s/P)+5(ps/P) = 0

the solution of which is
ps/P = 0-1191,
pe/P = —0:0412.

The forces in the members of the frame are then P, = 0-536P, P, = 0-619P, P; = 0-481P,
P, = 0:605P, P; = 0-119P and Pg = —0-041P. For the case n = 3, that is ¢ = ¢,0°/03 the
equations become with g5 = ps/P and g4 = pe/P,

(17+9/3)g3 +27/3 q3qs + 459593 — 2195 — 18/3 g5q6 + 155
+93q2—9g2+9 3 gg—1 =0

and

V3 a3 +5q346+3/3 a5 — /3 a3~ 29506 +/3 45+ 5q3+ 445 = O

that is a pair of simultaneous equations involving powers of g5 and g4. These equations
have been solved by a semi-graphical method. Curves were drawn to represent the relation
between g5 and g given by each of the equations, points on the curves being obtained by
assuming values for ¢4 and then solving the resulting cubic equations in gs. The final
solution was obtained as the co-ordinates of the point of intersection of the two curves.
The results obtained in this way were ps/P = 0-130 and pg/P = —0-053. The corres-
ponding bar forces in the structure are P, = 0-524P, P, = 0-630P, P; = 0-480P, P, =
0-599P, P; = 0-130P and P, = —0-053P.

As a check on the conditions of compatibility the extensions and contractions of the
bars were calculated as proportional to (F;/A4,)°.1; and a Williot displacement diagram
drawn. This is reproduced in Fig. 7. The displacement diagram confirms that compatibility
is satisfied.

7. STRUCTURES CONTAINING FLEXURAL MEMBERS ONLY

A great number of statically indeterminate structures, including continuous beams
and rigid jointed plane frames where the length of the members are large compared with
the cross-sectional dimensions, are able to sustain loads applied to them mainly by virtue
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FiG. 7. Williot displacement diagram for the frame shown in Fig. 6.

of the bending resistance of the members. The deformations which occur in these struc-
tures are predominantly flexural deformations. Because of the relatively insignificant
deformations of other kinds, i.e. axial and shear, it is reasonable to ignore them in the
analysis of structures in this class.

The statements made in the earlier section dealing with equilibrium apply to all
framed structures. In this section, as flexural deformations only are to be considered, the
internal actions which concern us are the bending moments throughout the structure
and equation (1) may be used as the general expression for the bending moment at section
iin the structure. As we are concerned at this stage with bending moment only it may be
less confusing if the general expression for bending moment is written as

"
M; = Pmg;+ Z Pty

r=1

where the terms have meanings similar to those given for the terms in equation (1).

Instead of using a stress-strain relation it is convenient to deal with moment-curva-
ture relationships, which of course depend upon both the member cross-sectional dimen-
sions and on the stress—-strain relation for the material. Thus it can be assumed that the
moment—curvature relation is of the form

b = G(M))
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Application of the principle of virtual work gives
W = J ¢;.m,; ds = 0;
A

where J, represents integration over the complete structure. Expanding this equation
gives

[ mi. GPmo+ 3 p,.my).ds =0.
A r=1

By taking in turn the m values m,;—m,,; there results m simultaneous equations in the
unknown p, ... p,.

8. SPECIAL MOMENT-CURVATURE RELATION
If the moment—curvature relation is given by
¢ = ¢o. (M/Mo)"*

then the ‘m’ work equations are of the form

n

=t I ds=0

Pm0i+ Z pm,;
J‘ mg; . d)O M
0

A

which can be rewritten as

¢ P)I m pr n
A(jl'(; m,; . mo,-+':1 an- ds = 0.

A

It is permissible to divide throughout by ¢4(P/M,)". In so doing it is seen that the resulting
simultaneous equations have (p,/P) as the unknowns. In other words, for structures with
members having moment—curvature relations of the form given above, no redistribution
of moments occurs as the external loads are increased, provided of course the loading is
“proportional”. In this limited sense then the principle of superposition may be applied
in such cases.

We now consider some examples.

The fixed-end beam
The fixed-end beam of uniform section with uniformly distributed load is one-fold
indeterminate. Such a beam together with the two moment diagrams my; and my; is
shown in Fig. 8.
The bending moment at any point is given by
wL wx?2

Mi :'T.X_T_pl

which, using the substitutions
k=x/L and g¢q = wL?/2

* M, is some limiting value of bending moment and ¢, is the corresponding curvature.



Statically indeterminate framed structures of non-linear elastic material 633
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Fi1G. 8. Fixed-ended beam with uniformly distributed load, and bending moment diagrams corresponding
to moment releases at the ends of the beam.

becomes
M; = qk—k*)=p,.
Consider the case for which the moment—curvature relation for the beam is given by

b/do = (M/M )

n being an odd positive integer.
Then the equation for the determination of p, is

j;(—n(Mi)" dk =0
ie.,

[ lak=K?)-p, dk = 0
or with

S = pi/q; j:[(k—kZ)—S]"dk=o.

Using the Binomial Expansion and then integrating we obtain the following equation;

11 121 1337
__Sn nC I Sn—l_nc __= _Sn—2 nC Ty _Tien—3
* 1[2 3] 2[3 4+5} * 3[4 578 7]8

1 %C, *C, *C, *C, {1 nC 1
S ol ST PR S W S —— - =0
“[5 6 7 819 st ne2 It

For n = 1, that is for a linear elastic material,

—S+5=
or

py = wL2/12 = 0-0833wL?.
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For n =3, the equation becomes, 140S*—708%+14S—1 = 0; which has a solution,

= 0-151 and hence p; = 0-0750wL>. For n = 5, the equation becomes 27725 —23108*+
92483 —1985% + 228 —1 = 0, which has a solution, S =0-1380, and hence p, = 0-0690wL>.
For n =7, the equation is 5148087 —60,0608° +36036S° — 12870S* + 2860S> — 39052 +
30S—1 = 0 from which § = 0-1315 and hence p, = 0-0657wL2.

In the foregoing n was chosen as an odd integer. This was done so that the sign of the
curvature would correspond with the sign of the bending moment at all points along the
beam. If n were chosen as an even integer the sign of the curvature would be unchanged
as the bending moment changed sign.

By changing the approach slightly the case of n even can be dealt with.

As the general expression for M is M = g(k—k?)—p, the point of zero moment, k,
say is found by solving the quadratic

ko_k%‘(Pl/Q) =0

or 2k, = 1—./(1—48S); where S = p,/q.

It is seen that for k < k, the bending moment is negative but for k, < k < } the bend-
ing moment is positive.

Taking account of this sign change the equation which must be solved for § becomes

ko 4+

[ =noayak-{" (~norydk=o
0 ko

or

jk" [(k—k?)— S]" dk—j* [(k—k?)—S]" dk = 0.
0 ko

For the particular case n = 2, the above equation becomes,
(24kg — 60kg + 40k3 — 1)— S(— 80k3 + 120k3 — 10)+ $%(120k, — 30) = 0;
but S = k,— k3. Substituting for S yields the equation
64k3 — 130k$ + 100k3 — 40k3 + 10k, —1 = 0;

from which k, = 0-194, and hence S = 0-1564 and p, = 0-0782wL?2. The variation of p,
with n is shown in Table 5.

TABLE §

n 1 2 3 5 7

p,/wL?*| 00833 00782 00750 00690 0-0657

In this problem p,wL? is the value of the fixed-end moment.

It is interesting to note that as n increases the value of p, approaches 0-0625 which is
the value for the “rigid-plastic’ solution. That this result might be expected is seen by
examining Fig. 9 in which moment—curvature curves of the form

¢/¢o = (M/Mo)"
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"Rigid-Plastic”
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FiG. 9. Moment—curvature diagrams of the form ¢/¢, = (M/M,)".
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are drawn for various values of n. In the same figure the moment-curvature curve for the
rigid-plastic case is also shown.

It is noted again that for the case curvature proportional to a power of moment there
is no relative redistribution of moments throughout the beam as the loading is increased.
Such moment-curvature relation of course has certain peculiarities; as M approaches
zero, dM/d¢ — oo and further dM/d¢ # 0 for any value of M.

The example dealt with in this section has been one-fold indeterminate only. To indi-
cate the greater difficulty, from the numerical point of view, associated with structures
having more than one indeterminate two additional examplés are given.

The fixed-end beam of uniform section loaded with a concentrated load P is shown in

Fig. 10, together with the bending moment diagrams representing Pmy;, m; and ms;.

The general expression for M, is

and

M; = Px+p,+p,x/L—---(—L/4 < x <0)

M; = p+p,x/L (0 < x < 3L/4).
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Fi16. 10. Fixed-ended beam with a concentrated load and bending moment diagrams corresponding to
moment and shear releases at the point load.

The virtual work equations in this case become

r3L/4
[y de+| (Myrdx =0
~Li4 0

and
0 3L/4
j X(M,)" dx + j (M) dx = 0.
-~ Li4 (4]

If we choose n = 3, after expanding and integrating the above equations become
102443 + 768¢%q, + 448493 + 80q3 — 9643 + 324,94, — 3¢5+ 164, —39,—1 = 0
and
1280¢3 +2240q3q, + 1200, 43 + 24443 + 80q7 — 309,49, + 395 — 159, + 3, + 1 = 0.
where
g, = p/PL and ¢, = p,/PL.

It is seen that in this case it is necessary to solve a pair of simultaneous equations
involving powers of q; and g,. Using a semi-graphical method together with Newton’s
method for finding root of a polynomial equation the following results were obtained:

p, = 0-085PL
p, = —0205PL.
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With these values for p, and p, the final bending-moment diagram is as shown in Fig. 11.

0085 PL
+

O-114 PL
0O-069 PL

Fi1G. 11. Final bending moment diagram for the beam of Fig. 10.

9. MIXED SYSTEMS

Works [3], [4] on the linear analysis of framed structures have drawn attention to the
fact that it is possible to make use of different release systems for the external load actions
and the self-equilibrating systems. It may not be obvious that mixed systems can also be
employed in the analysis of frames having non-linear moment-curvature relations.

Referring to the earlier section of this paper dealing with “Equilibrium” it is seen that
the internal actions in the members of a frame may be expressed as

m
F; = Pfo;+ le’rfn'
and the Pf,; term, corresponding to one release system, may be changed to (Pfy,;) corres-
ponding to some other release system merely by adding to Pf,; some or all of the f,; terms
with suitable multipliers. As the deformations are some function of the internal actions,
the deformations also may be represented by terms which have been derived from different
release systems.
As an illustration of mixed systems consider the rigid frame shown in Fig. 12.

A

F1G. 12. Fixed-ended portal frame with symmetrical loading.

As the structure is symmetrical and is loaded symmetrically it is two-fold indeter-
minate. Assume that the moment curvature relation is

¢/¢0 = (M/Mo)3

(i) In the first instance we will choose three releases at C for the external load system

and the self-equilibrating systems. The corresponding moment diagrams are shown in
Fig. 13.
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FiG. 13. Bending moment diagrams for the frame of Fig. 12 with three releases at C.

With this representation of the moments, the work equations involving ¢, and q,;
(q: = p\/PL, q; = p,/PL) are

76843 +768q3q, +512q,q5 + 128q3 — 480q3 — 384q,q9, — 128q3 + 1129, +48q, —9 = 0.
and
320q3 + 640q2q, +480q,q3 + 128q3 — 240q2 —320q,q, — 1204% + 60g, +40g, — 5 = 0.
Solving these equations gives
p, = 0145PL and p, = 0-168PL.
The final bending moments in the structure are then
M, = PL[—0250+0-145+0-168] = 0-063PL
Mg = PL[—0-250+0-145} = —0-105PL
M = PL[0-145] = 0-145PL.

(ii) As an example of the use of mixed systems now choose the P . m,; system shown in
Fig. 14, together with the m,; and m,; of the previous case.

P’"ol

F1G. 14. Bending moment diagram for the frame of Fig. 12 for the external load system and moment
releases at the ends of the beam.
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The work equations are now
512q3 +768q2q, + 512995 + 128q3 + 25643 + 962 + 16¢, +1 = 0
and

10g3 4+ 2092, +15¢,9% +4q3 = 0.

where g, = p,/PL and q, = p,/PL. From the second equation
91/9, = —0623.
Substituting in the first equation and solving the resulting cubic equation gives g, = 0168,

from which ¢, = —0-105 or p, = —0-105PL, and p, = 0-168PL.
The final bending moments in the structure are

M, = PL[0—-0105+0-168] = 0-063PL

My = PL[0—0105+0] = —0-105PL
Mc = PL[0-250—0-105+0] = 0-145PL

which are the same as those previously obtained.

10. OTHER MOMENT-CURVATURE RELATIONSHIPS

As it has been shown that there is no redistribution of bending moments in structures
having the special moment—curvature relationship —¢/¢, = (M/M,)" it is of interest to
examine the effect on redistribution of moments of other forms of moment—curvature
relations.

Consider the beam of Fig. 8, but now let the moment—curvature relation be given by
/o = 1—/[1—(M/M,)] for ¢ < ¢y and [M| < |M,l. For this curve dM/d¢ has a
definite value at M = 0 and for M = M,, dM/d¢ = 0, In order that the moment and
curvature should always be of the same sign in the beam considered, the expression is
rewritten as

d/po =[1 "\/{[1 —p1/Mol+gk/Mo—gk*/M}]
when the total moment is —ve, i.e., for 0 < k < k,, and
®/bo = [1—/{[1+p/Mo]~qk/Mq+ qk?/M,}]

when the total moment is +ve, i.e. for ky < k < 3. As before ¢ = wL?/2.
The work equation from which p, may be determined is

ko %
j ¢dk+j ¢ dk = 0.
0 ko
As before k, is given by
2ko = 1—/[1-4py/q).
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After performing the integrations we obtain,

—4{1—/[1=4p,/ql}+2/[1—p/M,]

_ -y JI1-4py/q] N ! }
—\/(CI/MO)({1+4(M0 Pl)/q}{sm J+aMo—pyyjal " JI1+4Mo—p,)a]

\/[4(M0+P1)/¢1— 1] ) -0
[4Mo/q—/[1—4p,/q]

It is seen that p, is not independent of the ratio of g and M. If wL?*/8 = M,, and we let
Y = p,/M, the equation for p, is

—243/(1-Y)—(2— Y){sin" L /[(1 - Y)/2— )] —sin~ ' /[1/2— Y)]}
+YIn(/Y)[1-/(1-Y)) = 0.

The solution to this equation is Y = 0655, i.e., p; = 0-655wL?/8 = 0-0819wL2. For the
case wL?/12 = M, with Y = p,/M, the equation for p, is

—4+4J[3-2Y)3]+2J(1—Y)
., [B3=2Y)y3 . _ 1
_\/6<[(5—2Y)/3]{Sln 1\/(—5_—2—f)7§—Sln lm}
JI2Y—1)3] )
2Y-1)/3]1 =0,
HRY=DRn o G-
The solution to this equation is Y = 0975, ie, p, = 0:975wL%/12 = 0-0812wL2. If
WL2/4 = Mo, then
4+4J1-2Y) 421 — V)= 2|3 -21)dsin-1 [L22Y _gn-1 1}
—4+4./(1-2Y)+2,/(1—Y)—/2{(3—2Y){sin 157 3y
Hg2y)in Y1 +2Y) ):0.

J2—J1=2Y)

The solution in this case is ¥ = 0331 and hence p, = 0-331wL2/4 = 0-0827wL?. The
variation of p, with wL2/M, is shown in Table 6.

+{4My+p1)/g—1} ln\/

TABLE 6
wL*/M,q pywL?
4 0-0827
8 00819
12 00812

For the linear elastic case p; = 0-0833wL?. From the above table it is seen that some
redistribution of moments occurs as the load intensity is increased from 4M,/L? to
12M /L%, however, the greatest departure from the linear elastic solution is only 2-5
per cent.

The above analysis is to a certain extent approximate only. As a slight redistribution
of moment is indicated as the loading is increased, the position of the point of zero moment
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changes, i.e. k, decreases slightly. This means that over a very small length of beam sections
which were subjected to small negative moments are subjected positive moments as the
loading increases; or in other words a small amount of unloading occurs. The moment
changes involved, however, are very small and occur about the point of zero moment. At
this position on the moment—curvature curve the difference in slope of the tangent and
the chord is insignificant and the effect of this unloading therefore may be neglected.

As a further example of a moment—curvature relation having a definite slope at
M = 0 and zero slope at M = M, consider the case

(/2)($/do) = sin™ (M/M) ;

applied to the case of the fixed-end beam with symmetrically placed point loads P as
shown in Fig. 15.

L L
P P
PR 4y
| Vv
k L -
-7
v T
Pmoi

( ! H

F1G. 15. Fixed-ended beam with symmetrical loading and bending moment diagrams corresponding to
moment releases at the ends of the beam.

The work equation for the determination of p, in this case becomes
Lia Lz
[, sin™ {Px/Mo)=(py/Mo)l dx+ [ sin™'[(PL/A4Mo)= (p./Mo)] dx = 0

After integration the equation becomes
(4Mo/PL){[(PL/4Mo)—(p1/Mo)] sin™ ((PL/4M ) —(p1/Mo)]
+\/{1 —[(PL/AM )= (p,/M)]*} —(p1/Mq) sin™*(p, /M)
—[1=(p1/Mo)*1} +sin™ [(PL/AM o) —(p1/M)] = 0

This equation has been solved for various values of PL/M and the results are shown in
Table 7.

TABLE 7
PL/M, py/PL
2 0187
4 0186
5 0-185
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Compared with these results p,/PL would be 0-1875 for the linear elastic case; whereas
the rigid-plastic analysis would give 0-125.

As in the previous example there is a slight redistribution of moments as the load
increases, but for all levels of the load considered the distribution of moments does not
differ from that for the linear elastic case by more than 1-3 per cent.

If we examine the behaviour of the fixed end beam of Fig. 15 and assume that the
moment-curvature relation is given by A(¢/¢,) = (M/M,)+ B[(M/M,)*] so that the curve
has a definite slope at M = 0, but has a positive slope for all other values of M the follow-
ing results are obtained (see Table 8).

TABLE 8
A B PL/M, p./PL
2 1 2 0185
2 1 4 0-181
2 1 5 0179
3 2 2 0184
3 2 4 0178
3 2 5 0175
5 4 2 0-181
5 4 4 0-175
5 4 5 0171

For any of these three moment—curvature relations the amount of redistribution with
increasing load is very slight, and the greatest divergence of the fixed-end moment from
that obtained for a linear analysis is only 85 per cent.

CONCLUSIONS

1. In the case of pin-jointed frameworks which are statically indeterminate and which
are composed of materials having a stress—strain relation of the form ¢/¢, = (g/0,)", where
n is any positive number, no redistribution of member forces occurs as the external loads
on the structure are increased, provided that, if more than one concentrated load is
applied, the loading is increased proportionally. In this limited sense the principle of
superposition of loads is valid.

If the value of n is made large it is found that the distribution of member forces
approaches the distribution obtained by plastic analysis.

2. For plane rigid jointed indeterminate structures, in which axial and shear deforma-
tions may be ignored, and which are composed of members having moment—curvature
relations of the form ¢/¢p, = (M/M,)" no redistribution of moments occurs as the external
loads are increased.

As for pin-jointed frameworks the “‘rigid-plastic’ solution is approximated by making
n large.

3. If the method of analysis employed is one in which the primary unknowns are
“actions”, then “mixed” systems may be employed irrespective of the form of the stress—
strain relation of the materials.

4. It has been shown in a limited number of examples of structures with symmetrical
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load systems and with non-linear moment-curvature relationships other than the power
type, that although redistribution of moments does occur with increasing loads this
redistribution is only slight and the distribution of moments is only slightly different from
that obtained by linear analysis. It is not possible, however, to make generalizations
regarding the behaviour of such structures with unsymmetrical loading.
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Résumé—Dans cette étude une méthode générale pour analyser les structures enchassées composées de materiel
elastique non-linéaire est décrite. Pour les chassis assemblés statiquement indeterminés, composés de materiel
ayant des relations de résistance contrainte de la forme & = gy(a/0,)" et pour des chassis assemblés rigides,
composés de pieces ayant des relations de moment—courbine de la forme ¢ = ¢,(M/M,Y, il est indiqué qu’au-
cune redistribution d’action ne survient lorsque le chargement est augmenté. L applicabilité de la méthode de
“systémes mixtes” est démontrée. Pour des relations de moment—courbure ayant une pente définie 8 M = 0, il
est démontré dans un nombres de cas particuliers que la redistribution sous un chargement augmentant n’est
que légere et que la distribution d’actions est similaire 4 celle obtenue par I’analyse linéaire.

Zusammenfassung—Eine allgemeine Methode fiir die Berechnung von Rahmen, zusammengesetzt aus nicht-
linearem elastischen Material, ist in diesgr Abhandlung beschrieben. Fiir statisch unbestimmte bolzenver-
bundene Rahmen, zusammengesetzt aus Materialien welche eine Spannungs-Beanspruchungsbezichung in
in der Form ¢ = gq(a/0,)" haben und fiir fest verbundene Rahmen, zusammengesetzt aus Gliedern welche
Moment-Biegungsbeziehung in der Form ¢ = ¢4(M/M )" haben, wird gezeigt, das keine Wiederverteilung von
Wirkungen vorkommt, als die Belastung zunimmt. Die Anwendbarkeit der Methode von “Gemischten' Sys-
temen” wird vorgefiithrt. Fiir Moment-Biegungsbeziehungen welche eine bestimmt Neigung bei M = null,
haben, ist in einer Anzahl von besonderen Fallen gezeigt, das die Wiederverteilung bei zunehmender Ladung

nur gering ist und das die Verteilung von Wirkungen denen #hnlich ist, die mit einer linearen Analyse erhalten
werden.

Ab6cTpakT—B 3ToM cTaThe OMUchiBaeTC OGN MeTOR aHANK3a KAPKACHOR KOHCTPYKUHMH KOMIIOHHPOBaH-
HOM HAa HEJIMHEHHOM 311aCTHYECKOM Matepuase. Ui CTaTHYeCKH HEONMpPEeRAEAMMBIX 3aKPEIUICHHBIX LIapHU-
pamH ¢depM, COCTABJIEHHBIX W3 MaTeEpHana, UMEIOLIEro OTHOLLEHME HanpskeHHe-nedopmauus GOpMbI
€ = €o(o/ag)® H W1A KECTKHX PaM, COCTABNEHHBIX K3 3JIEMEHTOB, HMEIOLLIMX OTHOLIEHHA MOMEHT-KPUBH3HA
dopmbl ¢ = do(M/M,)", moKasaHo, YTO NPH YBEIMYEHUH HATPY3KH HE NPOUCKOANT nepepacrpeneaeHus
neHcTBUs. [IeMOHCTPHPYETCA NMPHMEHUMOCTh METOAA ‘‘CMELIaHHBIX cuctem’”. I OTHOLIEHUWH MOMEHT-
KPHBH3Ha, HMEIOLLMX ONpenen€HHbIN HaKIOH TpH M = 0 B HEKOTOPOM UKCJIe OCOOEHHDBIX CNy4yaeB MOKa3bl-
BaeTCH, YTO MepepachpeeneHne Nol yBeaH4HBaloWeics Harpy3kol TONbKO MaJoe M, YTO pacnpeneneHue
neficrBus NonoOHO pacnpenesieHuio, NoayvaeMoMy NIPH JIMHEHHBIX aHain3ax.



