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STATICALLY INDETERMINATE FRAMED STRUCTURES
OF NON-LINEAR ELASTIC MATERIAL

F. E. ARCHER

School of Civil Engineering, University of New South Wales,
Kensington, N.S.W., Australia

Abstract-In this paper a general method of analysing framed structures composed on non-linear elastic
material is described. For statically indeterminate pin-jointed frames composed of material having a stress
strain relation of the form B = Bo(U/Uo)" and for rigid jointed frames composed of members having moment
curvature relations of the form <p = <Po(M/M0)" it is shown that no redistribution of actions occurs as the loading
is increased. The applicability of the method of "mixed systems" is demonstrated. For moment---<:urvature
relationships having a definite slope at M = 0 it is shown in a number of particular cases that redistribution
under increasing load is only slight and that the distribution of actions is similar to that obtained by a linear
analysis.

1. INTRODUCTION

NUMEROUS methods of analysis of statically indeterminate framed structures of linear
elastic material have been developed during the past half century. These methods apply
only to materials which behave in a Hookean manner. On the other hand, few, if any, of
the materials used in real structures are linear-elastic. Mild steel is very nearly linear
elastic up to the yield point, but beyond the yield point is plastic, and use has been made
of this plastic property in the "collapse" method of design of steel structures. Reinforced
concrete, however, is not linear-elastic at any stage. In spite of this fact building authori
ties suggest that the internal actions in indeterminate frames of reinforced concrete are
to be determined from a linear-elastic analysis.

In view of the fact that most structural materials are non-linear it is of interest to
examine a method for analysing indeterminate structures of such materials and to note
the effects on redistribution of certain forms of stress-strain relation.

Hoff [1] has shown that it is possible by means of an elastic analogue to eliminate the
parameter time from the analysis of the final state of stress in bodies subject to creep.
As, however, the stress-strain relations to be considered are in general non-linear, atten
tion is again focussed on non-linear elastic analysis. As an example Hoff [1] has used the
complementary energy method to determine the moment distribution in a frame for
which the rate of change of curvature of each element was assumed as proportional to a
power of the bending moment.

2. INDETERMINACY

The statement that a structure is statically indeterminate implies that the conditions
621
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of static equilibrium alone are insufficient to permit the determination of the internal
actions in the structure.*

3. EQUILIBRIUM

Any framed structure which is m-fold statically indeterminate may be converted to a
statically determinate structure by the introduction of m suitable releases. The releases
cannot be chosen indiscriminately but must in fact be so chosen that all internal actions
in the structure may be determined from the conditions of static equilibrium. In general,
however, it will be found that there are several ways in which the releases may be made.

Corresponding to the m releases made to reduce the structure to a statically deter
minate state it can be shown that there are m independent systems of self-equilibrating
member actions. If the structure is reduced to a one-fold indeterminate structure by intro
ducing (m-l) suitable releases and then unit value is postulated for the action corres
ponding to the mth release, it is possible to find, by the equations of statics, actions in
members throughout the structure corresponding to this unit action. Such a system of
forces or actions is referred to as a self-equilibrating system in that it is not related to
any load system external to the structure. By repeating the process m times with a different
and independent one-fold indeterminate structure each time, a total of m independent
systems of self-equilibrating forces is obtained. Any number of other systems of self
equilibrating forces can be obtained by taking linear combinations of the above systems.

If (P . fOi) is the generalized internal action (stress-resultant) at some section i of the
structure, such that this system of actions is in equilibrium with the applied external loads
described by P, and fri is the internal action at the same position, corresponding to the
rth system of self-equilibrating forces, then the sum of the actions

PfOi +Pr . /ri

will represent the internal action at position i in the structure such that the complete
system is in equilibrium with the external loads. In the above Pr is an arbitrary multiplier.
Any number of self-equilibrating systems with arbitrary multipliers together with the
system PfOi will give a system of actions in equilibrium with the external loads. However,
if it is decided to include the influence of actions at all the release positions (and this will
be necessary if the complete m fold indeterminate structure is to be analyzed) it will be
necessary to use all the m systems of self-equilibrating forces in the general expression for
the internal action at i, i.e.

m

Fi = PfOi+ L Pr·/ri·
r=l

(1)

The terms PfOi in equation (1) can be derived by analysing the structure which has
been made statically determinate, by the introduction of the above-mentioned m releases.
However, it is not necessary that these actions be determined in this way. They may be
derived by analysing the structure which has been made determinate by the introduction
of releases other than those previously referred to. Nevertheless, any system of actions

* Henderson and Bickley [2) have proposed a systematic procedure by means of which the degree of static
indeterminacy may be calculated. It is not intended to deal with this aspect of the problem here and the interested
reader may consult the paper referred to for a discussion of this problem.
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(P!O;)' corresponding to a particular choice of releases m will be found to be a combination
of the actions P!Oi and the terms f..; with specia.l values for the multipliers.

As an illustration of the above consider the structure shown in Fig. 1.

c
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E

FIG. I. Fixed-ended portal frame.

One possible set of releases are moment releases at A, C and D. Confining attention to
bending moments the actions P!Oi' !Ii' !2i and !3i are shown diagrammatically in Fig. 2.

11.1

+

fJj

FIG. 2. Bending moment diagrams for the external load system, and self-equilibrating systems with
hinges at A, C and D.

If one adds to P!o; the quantity (- PL/2)(fIi) the new system (P!o;)' = P!Oi -(PL/2)(fl;)
is obtained. This system is shown diagrammatically in Fig. 3 and corresponds to a deter
'minate structure obtained by making three releases at E.

FIG. 3. Bending moment diagram for the external load system with three releases at E.
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The complete specification of the internal actions by

Fi = P!Oj+Pi!li+P2!2i+P3!3i

is identical with the specification

Fi = (P!OJ'+P'1!li+P2!2i+P3!3i

provided

P'i = [Pi + (PL/2)].

It can be shown further that the P!Oi system need not necessarily refer to a statically
determinate structure but may refer to an indeterminate one obtained from the original
structure.

4. COMPATIBILITY

Although it was stated with reference to equation (1) that the multipliers Pr could have
any values whatsoever, it must be remembered that equilibrium only was being considered.
For arbitrary values of Pr it is possible that continuity will be destroyed at some or all of
the release positions (e.g. axial separations, lateral displacements and/or rotations may
occur). In order that compatibility be satisfied, that is that continuity be maintained
throughout the structure, it will be necessary to determine particular values for the multi
pliers Pro This operation will involve the calculation of deformations of the elements of
the structure, and these will depend upon the dimensions of members and upon the stress
strain relation of the material of which the members are composed.

5. PIN-JOINTED FRAMED STRUCTURES

In a structure composed of straight members joined together through frictionless
ball-joints the actions through the structure are axial forces only, provided the external
loads are applied at node points. Consider such a structure with 'm' redundants and for
simplicity let each member be of uniform cross-section throughout its length. Assume
further that the stress~strain relation for the material is e = eo. G(a/ao), where ao is a
limiting stress and Eo is the corresponding strain.

The axial force in the ith member, Fi , may be expressed as explained earlier as
m

Fj = PJ~j+ L Pr ·hi·
r == 1

The stress in the member will be given by

ai = Fi/A i

and, making use of the stress-strain relation, the strain in the member will be

ej = eo· G(F.laoAJ

The elongation of this member will be



Statically indeterminate framed structures of non-linear elastic material 625

The principle of virtual work may be stated in the following way. If any system of
forces is in equilibrium, the work done by the forces during any virtual displacements is
equal to zero.

Each of the self-equilibrating force systems referred to earlier may be taken with any
pattern of virtual 'displacements and according to the principle of virtual work the work
done by such a force system will be zero. If the virtual displacements are chosen as those
in the indeterminate structure acted upon by the external loads P, and remembering that
there are no discontinuities in this structure, then the total work will be given as the
product of the force /ri and the elongation ei for each member making up the self-equili
brating force system structure. Hence

WT = IJri·ei

= Lsoli ./ri' G((I:~)
=0

the summation being taken over all members making up the self equilibrating force
system structure.

Using the expression for F i gives;

(2)

Repeating the procedure for m independent self-equilibrating systems will yield m simul
taneous equations in which the unknowns are Pl ... Pm'

Except for the particular case where

s = const. (I
the simultaneous equations are not linear. Further, in general, Pl'" Pm will be non
linear functions of the load term P.

If the stress-strain relation for unloading is different from that for loading of a material
then the method which is summarized in the system of equations (2) is not valid if unload
ing occurs in any part of the structure during the general loading process.

6. SPECIAL STRESS-STRAIN RELATIONSHIP

If the stress-strain relation for the material has the special form

where n is any number greater than one, but not necessarily an integer, then equation (2)
becomes

" I, j,,[PfOi+Ptfli+' "Pmfm~' n = 0
L, So ,. rl A .

(10 i

This can be re-written in the form
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As (I>opn/ao) is non-zero we can divide throughout by that quantity. In the resulting
system of non-linear simultaneous equations the unknowns are

(ptfP), (P2/P), ... (p"jP).

For such a stress-strain relation, then, the ratio of forces in the various members will
be independent of the intensity of the load system characterized by P, provided that the
structure is subjected to proportional loading. In this limited sense the principle of super
position applies in this special case. Further, as the relative distribution of forces in the
members remains constant as the external loads are increased, no unloading occurs in any
member and the method of analysis is therefore valid.

Example 1

Consider the symmetrical three bar structure of Fig. 4. The bars are of equal cross
sectional area A and the material of each bar has a stress-strain relation I> = [Jan . .. n > 1

A B c

D

P

FIG. 4. Symmetrical three-bar system.

Let

PAD = PCD = PI

and

To satisfy equilibrium

The stress in AD and CD is PtfA and the corresponding strain is [J(PtfA)". The
elongation of member AD is fJ(PtfA)". L sec ex. The vertical displacement of D corres
ponding to this elongation is

[J(;rL sec
2

ex.

The stress in member BD is P2/A, and the corresponding strain is fJ(P2 /A)n.
The elongation of member BD and consequently the vertical displacement of D is,

(
P2)n

fJ A .L.
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To satisfy the compatibility condition

p(~rLsec2a = p(;) n. L

from which

Pl' sec2/na = P2 •

Substitution in the equilibrium equation yields

P(cos a)2/n
P - ----'-----,--,--=-c-

1 - 1+2(cos a)1+2/n

and so

627

P
P - -----::-:-------,-c;-;-;;c;

2 - 1+2(cos a)1+2/n'

Table 1 shows the variation in P21P for various values of n for the particular case
a = 60°.

TABLE I

n

1
2
3
4
5

00

0·800
0·666
0·615
0·586
0·569
0'500

It is of interest to note that as n becomes very large the result approaches the result
obtained by assuming that the material of the bars is "rigid-plastic". If the rigid-plastic
approach is made there is no unique solution so long as the force in all members is below
the force to cause plastic flow-any distribution of forces satisfying the equilibrium
conditions will be valid. I~ however, the material has a stress-strain relation

then for the situation dealt with here the distribution of forces in the bars is unchanged
from the beginning of loading up to any value of the applied load.

Example 2
Consider the unsymmetrical frame of Fig. 5. The bars in this structure are all of cross

sectional area A, and the stress-strain relation is

8= 80(:0)"
Using the notation of the earlier section, the member forces and sizes are shown In

Table 2.



628 F. E. ARCHER

FIG. 5. Unsymmetrical three-bar system.

TABLE 2

Member Pf~; f;; F, = P!oi+pdli

1 0 I PI

P _ ~(~~sJ' +sin 1') P PI eosy sin I')2 -cosec ()( ~cosec()(-- ~~+~-

2 2 cos ()( SIn ()( 2 2 cos ()( sin ()(

P -H::::-::~) ~cosec(J(_~!(~iny _co~)3 -cosec ()(
2 2 2 sin ()( cos ()(

becomes

As a particular case take !Y. = 60° and y = 30°, then the work equation

(F)nI.lJli· i = 0

-2[1-2(~ J+ [1+(~)J+(3)1+n/2·(~Y=0.

Expanding the above gives

-1 + 5. nC 1. (~) -7. nci (~) 2+ 17 . nC3(~) 3 ... -(2n-1). nCn_1(~) n-l

+{2n+l+1+(3)1+n/2}(~)n = 0

if n is an odd integer, and

-1+5.nCl(~)-7 .nC2(~)2+17 .nC3(~) 3 ... +(2n+1).nCn_l(~)n-l

-{2n+l_1-(3)1+n/2}(~r= 0

if n is an even integer.
For any value of n it is seen that Pl is independent of the value of P. In this particular

problem there is no difficulty associated with taking n either odd or even as the forces in
the members are all positive for all values of P and the corresponding elongations obtained
in terms of F7 are all of the same sign.*

* If the loading or form of the structure were such that the force in some members was negative the use of an
even value for n would make the changes in length of those members positive instead of negative.
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The values of the forces in the three members are shown in Table 3 for several values
of n.

TABLE 3

n PI/P P 2/P P 3/P

1 0·09815 (0·80370) J3/3 (1·09815) J3/3
2 0·09807 (0·80386) J3/3 (1·09807) J3/3
3 0·0734 (0·8532) J3/3 (1·0734) J3/3
3·5 0·0635 (0·8730) J3/3 1/·0635) J3/3
4 0·0560 (0·8880) J3/3 (1·0560) J3/3
5 0·0453 (0·9094) J3/3 (1·0453) J3/3

As n increases PdP decreases while P2/P and P3/P approach the value ")3/3. For this
particular structure the rigid-plastic analysis would give PdP = 0, and P2/P = P3/P =
")3/3.

Example 3
The structure considered in Examples 1 and 2 were one-fold indeterminate only.

The next example to be considered will be the two-fold indeterminate structure of Fig. 6.

~ ---'F ---="C

FIG. 6. Two-fold indeterminate plane pin-jointed frame.

All bars have the same cross-sectional area which may be taken as unity and all bars
except 5 are of length L. The forces in the bars are given in Table 4 in terms of the external
load and unit values of forces in members 5 and 6.

TABLE 4

Member Length PIo' Is, I6i F,

1 L J3/3P 0 1 J3/3P+P6
2 L J3/3P 0 -1 J3/3P-P6
3 L J3/3P -2J3/3 -1 J3/3P - 2 J3/3ps - P6
4 L J3/3P J3/3 1 J3/3P + J3/3ps +P6
5 J3L 0 1 0 Ps
6 L 0 0 1 P6
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and

If it is assumed that the stress-strain relation for the material is given by

I: = I:o(a/ao)n

then the parameters Ps and P6 will be obtained by solving the equations
6

L (Fit· iSi . Ii = 0
i= 1

6

L (Fit .f6i .Ii = O.
i= 1

For the case n = 1, that is for a linear elastic material the above equations become,

(S +3J3)(ps/P) +3J3 (P6/P) - 1 = 0

J3 (Ps/P)+S(P6/P) = 0

the solution of which is

Ps/P = 0,1191,

P6/P = -0,0412.

The forces in the members of the frame are then P1 = 0'S36P, P2 = 0'619P, P3 = 0·481P,
P4 = O'60SP, Ps = 0·119P and P6 = -0·041P. For the case n = 3, that is I: = l:oa3/a6 the
equations become withqs = Ps/P and q6 = P6/P,

(17 + 9J3)q~ + 27J3 q;q6 + 45qsq~ - 21q; -18J3 qSq6 + ISqs

+9J3q~-9q~+9J3q6-1= 0

and

that is a pair of simultaneous equations involving powers of qs and q6' These equations
have been solved by a semi-graphical method. Curves were drawn to represent the relation
between qs and q6 given by each of the equations, points on the curves being obtained by
assuming values for q6 and then solving the resulting cubic equations in qs. The final
solution was obtained as the co-ordinates of the point of intersection of the two curves.
The results obtained in this way were Ps/P = 0·130 and P6/P = -0·OS3. The corres
ponding bar forces in the structure are P1 = 0·S24P, P2 = 0·630P, P3 = 0'480P, P4 =
0·S99P, Ps = 0·130P and P6 = -0·OS3P.

As a check on the conditions of compatibility the extensions and contractions of the
bars were calculated as proportional to (FdA i)3. Ii and a Williot displacement diagram
drawn. This is reproduced in Fig. 7. The displacement diagram confirms that compatibility
is satisfied.

7. STRUCTURES CONTAINING FLEXURAL MEMBERS ONLY

A great number of statically indeterminate structures, including continuous beams
and rigid jointed plane frames where the length of the members are large compared with
the cross-sectional dimensions, are able to sustain loads applied to them mainly by virtue
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Db

Do

FIG. 7. Williot displacement diagram for the frame shown in Fig. 6.

of the bending resistance of the members. The deformations which occur in these struc
tures are predominantly flexural deformations. Because of the relatively insignificant
deformations of other kinds, i.e. axial and shear, it is reasonable to ignore them in the
analysis of structures in this class.

The statements made in the earlier section dealing with equilibrium apply to all
framed structures. In this section, as flexural deformations only are to be considered. the
internal actions which concern us are the bending moments throughout the structure
and equation (1) may be used as the general expression for the bending moment at section
i in the structure. As we are concerned at this stage with bending moment only it may be
less confusing if the general expression for bending moment is written as

III

Mi = PmOi + L Prm,.i
r~l

where the terms have meanings similar to those given for the terms in equation (1).
Instead of using a stress-strain relation it is convenient to deal with moment-curva

ture relationships, which of course depend upon both the member cross-sectional dimen
sions and on the stress-strain relation for the material. Thus it can be assumed that the
moment-curvature relation is of the form

4>i = G(Mt>



632 F. E. ARCHER

Application of the principle of virtual work gives

WT = t cPi . mri ds = 0 ;

where JA represents integration over the complete structure. Expanding this equation
gIves

m

J mri · G(PmOi + L Pr' mrJ· ds = O.
A r=1

By taking in turn the m values mli - mmi there results m simultaneous equations in the
unknown PI ... Pm'

8. SPECIAL MOMENT-CURVATURE RELATION

If the moment-eurvature relation is given by

then the 'm' work equations are of the form

which can be rewritten as

cPO
pn f ( m Pr ) n-n- mri · mOi+ L -mri ds = O.

M o A r=I P

It is permissible to divide throughout by cPo(P/Mot. In so doing it is seen that the resulting
simultaneous equations have (Pr/P) as the unknowns. In other words, for structures with
members having moment-eurvature relations of the form given above, no redistribution
of moments occurs as the external loads are increased, provided of course the loading is
"proportional". In this limited sense then the principle of superposition may be applied
in such cases.

We now consider some examples.

The .fixed-end beam
The fixed-end beam of uniform section with uniformly distributed load is one-fold

indeterminate. Such a beam together with the two moment diagrams mOi and mli is
shown in Fig. 8.

The bending moment at any point is given by

wL wx 2

M i =T· x -T-Pl

which, using the substitutions

k = x/L and q = wL2/2

* M o is some limiting value of bending moment and <Po is the corresponding curvature.
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I( ~===-=I===~)I
m1i

FIG. 8. Fixed-ended beam with uniformly distributed load, and bending moment diagrams corresponding
to moment releases at the ends of the beam.

becomes

Consider the case for which the moment--eurvature relation for the beam is given by

n being an odd positive integer.
Then the equation for the determination of PI is

f: (-l)(M;)" dk = 0

I.e.,

or with

633

S = pdq; s: [(k-k 2 )-S]" dk = O.

Using the Binomial Expansion and then integrating we obtain the following equation;

-S"+"CI[~-~JS"-I_"C2[~-~+~JS"-2+"C [~-~+~-~JS"-32 3 345 3 45 6 7

-"C4G-4~1+ 4~2_ 4~3+ 4~4JS"-4_ ... +Ln~l- ~~~- ... -2n~lJ = O.
For n = 1, that is for a linear elastic material,

-s+i = 0

or

PI = wUj12 = O·0833wL2
.
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For n = -:3, the equation becomes, 140S3
- 70S2+ 14S -1 = 0; which has a solution,

S = 0·151 and hence Pi = 0'0750wL 2. For n = 5, the equation becomes 2772S5 - 231OS4 +
924S3 -198S2+ 22S -1 = 0, which has a solution, S=0'1380, and hence Pi = 0·0690wL2.
For n = 7, the equation is 51480S7

- 60,060S6 +36036S5 -12870S4 +2860S3
- 390S2+

30S-1 = 0 from which S = 0·1315 and hence Pi = 0·0657wL2.
In the foregoing n was chosen as an odd integer. This was done so that the sign of the

curvature would correspond with the sign of the bending moment at all points along the
beam. If n were chosen as an even integer the sign of the curvature would be unchanged
as the bending moment changed sign.

By changing the approach slightly the case of n even can be dealt with.
As the general expression for M is M = q(k - k2)- P, the point of zero moment, ko

say is found by solving the quadratic

ko-k5-(Pdq) = 0

or 2ko = 1-.J(1-4S); where S = pdq.
It is seen that for k < ko the bending moment is negative but for ko < k < t the bend

ing moment is positive.
Taking account of this sign change the equation which must be solved for S becomes

J
k

O It(-l)(M;t dk- (-l)(Mit dk = 0
o ko

or

For the particular case n = 2, the above equation becomes,

(24kg -60kci +40k~-l)-S( - 80k~ + 120k5 -1O)+S2(120ko-30) = 0;

but S = ko- k5. Substituting for S yields the equation

64kg - 130kci+ 1OOk~ - 40k5 + lOko- 1 = 0;

from which k o = 0'194, and hence S = 0·1564 and Pi = 0·0782wL2. The variation of Pi
with n is shown in Table 5.

TABLE 5

n 2 3 5 7

p,/wL2 0·0833 0·0782 0·0750 0·0690 0·0657

In this problem PiwL2 is the value of the fixed-end moment.
It is interesting to note that as n increases the value of Pi approaches 0·0625 which is

the value for the "rigid-plastic" solution. That this result might be expected is seen by
examining Fig. 9 in which moment-curvature curves of the form
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I·OJ------""T""-----------=__-::=------

0·8
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<I>
ero

0-8 '·0 1'2 ',4

FIG. 9. Moment--eurvature diagrams of the form 4>/ifJo = (M/Mo)"'

are drawn for various values of n. In the same figure the moment-{;urvature curve for the
rigid-plastic case is also shown.

It is noted again that for the case curvature proportional to a power of moment there
is no relative redistribution of moments throughout the beam as the loading is increased.
Such moment-{;urvature relation of course has certain peculiarities; as M approaches
zero, dM/d4J -+ 00 and further dM/d4J #- 0 for any value of M.

The example dealt with in this section has been one-fold indeterminate only. To indi
cate the greater difficulty, from the numerical point of view, associated with structures
having more than one indeterminate two additional examples are given.

The fixed-end beam of uniform section loaded with a concentrated load P is shown in
Fig. 10, together with the bending moment diagrams representing Pmo;, mli and m2i'

The general expression for M i is

M; = PX+Pl+P2X/L- .. ·(-L/4 < x < 0)

and

M i = Pl +P2x/L (0 < x < 3L/4).
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~=P="'=X=3=4L====J

~L~
~lF=i====~

mzi

FIG. 10. Fixed-ended beam with a concentrated load and bending moment diagrams corresponding to
moment and shear releases at the point load.

The virtual work equations in this case become

,0 J'3L/4

J (Mi)" dx + (MJ" dx = 0
-L14 0

and

f

o f3L/4
x(M j )" dx + x(MJ" dx = O.

-L/4 0

If we choose n = 3, after expanding and integrating the above equations become

1024qi +768qiq2 +448qlq~+ 80q~ -96qi + 32qlq2 - 3q~ + 16qt - 3q2 -1 = 0

and

1280qi +2240qiq2 + 1200qlq~ +244q~ +80qi - 30qlq2 + 3q~ -15ql + 3q2 + 1 = O.

where

It is seen that in this case it is necessary to solve a pair of simultaneous equations
involving powers of ql and q2' Using a semi-graphical method together with Newton's
method for finding root of a polynomial equation the following results were obtained:

Pl = O·085PL

P2 = -O·205PL.
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With these values for PI and pz the final bending-moment diagram is as shown in Fig. 11.

0·114 PL

0·069 PL

FIG. II. Final bending moment diagram for the beam of Fig. 10.

9. MIXED SYSTEMS

Works [3], [4] on the linear analysis of framed structures have drawn attention to the
fact that it is possible to make use of different release systems for the external load actions
and the self-equilibrating systems. It may not be obvious that mixed systems can also be
employed in the analysis of frames having non-linear moment-curvature relations.

Referring to the earlier section of this paper dealing with "Equilibrium" it is seen that
the internal actions in the members of a frame may be expressed as

m

Fi = Pio i + I p,Jri
r= I

and the Pioi term, corresponding to one release system, may be changed to (Pio i) corres
ponding to some other release system merely by adding to Pioi some or all of the Iri terms
with suitable multipliers. As the deformations are some function of the internal actions,
the deformations also may be represented by terms which have been derived from different
release systems.

As an illustration of mixed systems consider the rigid frame shown in Fig. 12.

P

B

A

c

FIG. 12. Fixed-ended portal frame with symmetrical loading.

As the structure is symmetrical and is loaded symmetrically it is two-fold indeter
minate. Assume that the moment curvature relation is

(i) In the first instance we will choose three releases at C for the external load system
and the self-equilibrating systems. The corresponding moment diagrams are shown in
Fig. 13.



638 F. E. ARCHER

PL
4" +1 \I

+1 +1

1 mli. J

FIG. 13. Bending moment diagrams for the frame of Fig. 12 with three releases at C.

With this representation of the moments, the work equations involving ql and q2;
(ql = pt/PL, q2 = P2/PL) are

768qi + 768qiq2 + 512q 1q~ + 128q~ - 480qi - 384q1q2 -128q~ + 112ql + 48q2 - 9 = O.

and

320qi+640qiq2+480qlq~+128q~-240qi-320qlq2-120q~+60ql+40q2-5 = O.

Solving these equations gives

Pl = 0·145PL and P2 = 0·168PL.

The final bending moments in the structure are then

M A = PL[ -0,250+0'145+0'168] = 0·063PL

M B = PL[ -0,250+0'145] = -0·105PL

M c = PL[0'145] = 0·145PL.

(ii) As an example of the use of mixed systems now choose the P . mOi system shown in
Fig. 14, together with the mli and m2i ofthe previous case.

FIG. 14. Bending moment diagram for the frame of Fig. 12 for the external load system and moment
releases at the ends of the beam.
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The work equations are now

512qi + 768qiq2 + 512qtq~ + 128q~ +256qi +96qi+ 16qt + 1 = 0

and

where qt = pt/PL and qz = pz/PL. From the second equation

qi/qz = -0-623_
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Substituting in the first equation and solving the resulting cubic equation gives qz = 0-168,
from which qt = -0-105 or Pt = -0-105PL, and pz = 0-168PL.

The final bending moments in the structure are

M A = PL[0-0-105+0-168] = 0-063PL

MB = PL[0-0-105+0] = -0·105PL

Me = PL[0·250-0·105+0] = 0·145PL

which are the same as those previously obtained.

10. OTHER MOMENT-eURVATURE RELATIONSHIPS

A"s it has been shown that there is no redistribution of bending moments in structures
having the special moment-curvature relationship -cP/cPo = (M/Mot it is of interest to
examine the effect on redistribution of moments of other forms of moment-curvature
relations.

Consider the beam of Fig. 8, but now let the moment-curvature relation be given by
cP/cPo = l-.J[l-(M/Mo)] for cP < cPo and IMI < IMol. For this curve dM/dcP has a
definite value at M = 0 and for M = Mo, dM/dcP = O. In order that the moment and
curvature should always be of the same sign in the beam considered, the expression is
rewritten as

when the total moment is - ve, i.e., for 0 < k < ko, and

when the total moment is +ve, i.e. for ko < k < 1- As before q = wLz/2.
·The work equation from which Pt may be determined is

fk
O JtcjJ dk + cP dk = O.

a ko

As before ko is given by

2ko = 1-.J[1-4pi/q].
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After performing the integrations we obtain,

-4{I -J[1-4ptJq]} +2J[I-ptJMo]

/( / ({ 4( ) l{' -I J[1-4ptJq]-v q M O) 1+ MO-PI/qf SIn J[l +4(M
o

-pd/q]

J[4(M o+PI)/q-l] )
+{4(Mo+pd/q-l} In J[4M

o
/q-J[1-4ptJq] = O.

It is seen that PI is not independent of the ratio of q and Mo. If wL 2/8 = Mo, and we let
Y = ptJMo the equation for PI is

- 2 + 3J(I- Y)-((2- Y){ sin -IJ[(1- Y)/(2 - Y)] - sin -IJ[I/(2 - Y)]}

+ Yin (J Y)/[I- J(1-- Y)]) = O.

The solution to this equation is Y = 0'655, i.e., PI = 0'655wL2 /8 = 0·0819wU. For the
case wU/12 = M o, with Y = PI/Mo the equation for PI is

-4+4J[(3-2Y)/3]+2J(1- Y)

/ ~[ 2Y ]{. - I) (3 - 2Y)/3 . - I 1 }
-v 6 ,(5- )/3 SIn (5-2Y)/3 SIn J[(5-2Y)/3]

J[(2 Y - 1)/3] )
+[(2Y-l)/3]In J(2/3)-J[(3-2Y)/3] = O.

The solution to this equation is Y = 0'975, i.e., PI = 0'975wL2/12 = 0·0812wU. if
wL2/4 = Mo, then

-4+4J(1-2Y)+2J(1- Y)-J2 ((3 -2Y){sin- I JI-2Y -sin- I J_l_}
3-2Y 3-2Y

J(1 +2Y) )
+(1 +2Y) In J2-J(1-2Y) = O.

The solution in this Case is Y = 0·331 and hence PI = 0'331wL2 /4 = 0·0827wU. The
variation of PI with wL2

/ M 0 is shown in Table 6.

TABLE 6

4 0·0827
8 0·0819

12 0·0812

For the linear elastic case PI = 0·0833wL 2
• From the above table it is seen that some

redistribution of moments occurs as the load intensity is increased from 4M0/L2 to
12M0/L2, however, the greatest departure from the linear elastic solution is only 2·5
per cent.

The above analysis is to a certain extent approximate only. As a slight redistribution
of moment is indicated as the loading is increased, the position of the point of zero moment
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changes, i.e. ko decreases slightly. This means that over a very small length of beam sections
which were subjected to small negative moments are subjected positive moments as the
loading increases; or in other words a small. amount of unloading occurs. The moment
changes involved, however, are very small and occur about the point of zero moment. At
this position on the moment~urvature curve the difference in slope of the tangent and
the chord is insignificant and the effect of this unloading therefore may be neglected.

As a further example of a moment~urvature relation having a definite slope at
M = 0 and zero slope at M = M 0 consider the case

applied to the case of the fixed-end beam with symmetrically placed point loads P as
shown in Fig. 15.

L

t t
L

~
'4 '4

~
I.. L .j

~
+

PL

~4'

Pmoi

(f ~)-I

ml~

FIG. 15. Fixed-ended beam with symmetrical loading and bending moment diagrams corresponding to
moment releases at the ends of the beam.

The work equation for the determination of PI in this case becomes

After integration the equation becomes

(4MojPL){[(PLj4Mo)-(pdMo)] sin -1[(PLj4Mo)-(pdM0)]

+J{I- [(PLj4Mo)-(pdMo)F} -(PdMo) sin -1(pdMo)

-J[I-(PdMo)2]} +sin- I [(PLj4Mo)-(pdM0)] = 0

This equation has been solved for various values of PLjM0 and the results are shown in
Table 7.

TABLE 7

PL/Mo

2
4
5

Pl/PL

0·187
0·186
0·185
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Compared with these results pt/PL would be 0·1875 for the linear elastic case; whereas
the rigid-plastic analysis would give 0·125.

As in the previous example there is a slight redistribution of moments as the load
increases, but for all levels of the load considered the distribution of moments does not
differ from that for the linear elastic case by more than 1·3 per cent.

If we examine the behaviour of the fixed end beam of Fig. 15 and assume that the
moment-curvature relation is given by A(c/>/c/>o) = (M/Mo)+B[(M/Mo)3] so that the curve
has a definite slope at M = 0, but has a positive slope for all other values of M the follow
ing results are obtained (see Table 8).

TABLE 8

A B PL/Mo p,/PL

2 2 0·185
2 4 0'181
2 5 0·179

3 2 2 0·184
3 2 4 0·178
3 2 5 0·175

5 4 2 0·181
5 4 4 0·175
5 4 5 0·171

For any of these three moment-eurvature relations the amount of redistribution with
increasing load is very slight, and the greatest divergence of the fixed-end moment from
that obtained for a linear analysis is only 8·5 per cent.

CONCLUSIONS

1. In the case of pin-jointed frameworks which are statically indeterminate and which
are composed of materials having a stress-strain relation of the form e/eo = ((1/(10)", where
n is any positive number, no redistribution of member forces occurs as the external loads
on the structure are increased, provided that, if more than one concentrated load is
applied, the loading is increased proportionally. In this limited sense the principle of
superposition of loads is valid.

If the value of n is made large it is found that the distribution of member forces
approaches the distribution obtained by plastic analysis.

2. For plane rigid jointed indeterminate structures, in which axial and shear deforma
tions may be ignored, and which are composed of members having moment-eurvature
relations of the form c/>/c/>o = (M/M0)" no redistribution of moments occurs as the external
loads are increased.

As for pin-jointed frameworks the "rigid-plastic" solution is approximated by making
n large.

3. If the method of analysis employed is one in which the primary unknowns are
"actions", then "mixed" systems may be employed irrespective of the form of the stress
strain relation of the materials.

4. It has been shown in a limited number of examples of structures with symmetrical
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load systems and with non-linear moment~urvature relationships other than the power
type, that although redistribution of moments does occur with increasing loads this
redistribution is only slight and the distribution of moments is only slightly different from
that obtained by linear analysis. It is not possible, however, to make generalizations
regarding the behaviour of such structures with unsymmetrical loading.
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Resume-Dans cette etude une methode generale pour analyser les structures enchassees composees de materiel
elastique non-lineaire est decrite. Pour les chassis assembles statiquement indetermines, composes de materiel
ayant des relations de resistance contrainte de la forme E = Eo(U/Uo)" et pour des chassis assembles rigides,
composes de pieces ayant des relations de moment-courbine de la forme rP = rPo(M/Mo)", il est indique qu'au
cune redistribution d'action ne survient lorsque Ie chargement est augmente. L applicabilite de la methode de
"systemes mixtes" est demontree. Pour des relations de moment-{,)ourbure ayant une pente definie a M = 0, il
est demontre dans un nombres de cas particuliers que la redistribution sous un chargement augmentant n'est
que legere et que la distribution d'actions est similaire a celie obtenue par l'analyse lineaire.

Zusammenfassung-Eine allgemeine Methode fUr die Berechnung von Rahmen, zusammengesetzt aus nicht
linearem elastischen Material, ist in dies$r Abhandlung beschrieben. Fiir statisch unbestimmte bolzenver
bundene Rahmen, zusammengesetzt aus Materialien welche eine Spannungs-Beanspruchungsbeziehung in
in der Form E = Eo(U/Uo)" haben und fiir fest verbundene Rahmen, zusammengesetzt aus Gliedem welche
Moment-Biegungsbeziehung in der Form rP = rPo(M/Mo)" haben, wird gezeigt, das keine Wiederverteilung von
Wirkungen vorkommt, als die Belastung zunimmt. Die Anwendbarkeit der Methode von "Gemischten Sys
temen" wird vorgefUhrt. Fiir Moment-Biegungsbeziehungen welche eine- bestimmt Neigung bei M = null,
haben, ist in einer Anzahl von besonderen Falle-n gezeigt, das die Wiederverteilung bei zunehmender Ladung
nur gering ist und das die Verteilung von Wirkunge-n denen ahnlich ist, die mit einer linearen Analyse erhalten
werden.

A6cTpaKT-B 3TOA CTaTbe onHcbIsaeTcli 06UlHA MeTOtJ, aHaJIH3a KapKacHoA KOHCTPYKL\HH KOMnOHHpOBaH
HoA Ha HeJIHHeAHOM 3JIaCTH'IecKOM MaTepHaJIe. )l,JIli CTaTH'IecKH HeonpetJ,eJIJ1MbIX 3aKpenJIeHHbIX UlapHH
paMH cflePM, COCTaBJIeHHbIX H3 MaTepHaJIa, HMeIOUlero OTHoweHHe HanplilKeHHe-tJ,eljlopMaL\HlI IjIOPMbl
£ = £o(a/ao)n H MlilKeCTKHX paM, COCTaBJIeHHblX H3 3JIeMeHTOB, HMeIOUlHX OTHoweHHlI MOMeHT-KpHBJ13Ha
IjIOPMbl '" = t/>o(M/Mo)n, nOKa3aHO, 'ITO npH yBeJIH'IeHHH Harpy3KH He npOHcXOtJ,HT nepepacnpetJ,eJIeHHlI
tJ,eAcTBHlI. )l,eMoHcTpHpyeTcli npHMeHJ1MOCTb MeTOlla "cMewaHHblX cHcTeM". )l,JIli OTHoweHHA MOMeHT
KpJ1BH3Ha, HMeIOUlHX onpetJ,eJIeHHbIA HaKJIOH npH M = 0 B HeKOTopOM 'IHCJIe OC06eHHbIX CJIy'laeB nOKa3bl
saeTcll, 'ITO nepepacnpetJ,eJIeHHe notJ, YBeJIH'IHsaIOUleAcli HarpY3KoA TOJIbKO MaJIoe H, 'ITO pacnpelleJIeHHe
lleAcTBHlI nOtJ,06HO pacnpelleJIeHHIO. nOJIy'laeMoMy npH JIHHeAHbIX aHaJIH3ax.


